Design of an exhaust air energy recovery wind turbine generator for energy conservation in commercial buildings
نویسندگان
چکیده
The exhaust air energy recovery wind turbine generator is an on-site clean energy generator that utilizes the advantages of discharged air which is strong, consistent and predictable. Two vertical axis wind turbines (VAWTs) in cross-wind orientation which are integrated with an enclosure are installed above a cooling tower to harness the discharged wind for electricity generation. It is mounted at a specific distance and position above the cooling tower outlet. The enclosure (consisting of several guide-vanes and diffuser-plates) acts as a wind poweraugmentation device to improve the performance of the VAWTs. The guide-vanes are placed in between the discharged air outlet and the wind turbine. They are designed to guide the oncoming wind stream to an optimum flow angle before it interacts with the rotor blades. The diffuser-plates are built extended from the outlet duct of the exhaust air system. They are tilted at an optimum angle to draw more wind and accelerate the discharged airflow. A particular concern related to public safety which may be due to blade failure is minimized since the VAWTs are contained inside the enclosure. The performance of the VAWTs and its effects on the cooling tower’s air intake speed and current consumption of the power-driven fan were investigated. A laboratory test was conducted to evaluate the effectiveness of the energy recovery wind turbine (5-bladed H-rotor with 0.3 m diameter) generator on a cooling tower model. The results showed a reduction in the power consumption of the fan motor for cooling tower with energy recovery turbine compared to the normal cooling tower. Meanwhile, the VAWT’s performance was improved by a 7% increase in rotational speed and 41% reduction in response time (time needed for the turbine to reach maximum rotational speed) with the integration of the enclosure. This system can be used as a supplementary power for building lighting or fed into electricity grid for energy demand in urban building. The energy output is predictable and consistent, allowing simpler design of the downstream system. The fact that there are an abundance of cooling tower applications and unnatural exhaust air resources globally causes this to have great market potential.
منابع مشابه
Design and Experimental Analysis of an Exhaust Air Energy Recovery Wind Turbine Generator
A vertical axis wind turbine (VAWT) was positioned at the discharge outlet of a cooling tower electricity generator. To avoid a negative impact on the performance of the cooling tower and to optimize the turbine performance, the determination of the VAWT position in the discharge wind stream was conducted by experiment. The preferable VAWT position is where the higher wind velocity matches the ...
متن کاملTechno-Economic Assessment of Different Inlet Air Cooling Systems in Warm Dry & Wet Climate Stations
Performance of a gas turbine mainly depends on the inlet air temperature. The power output of a gas turbine depends on the flow of mass through it. This is precisely the reason why on hot days, when air is less dense, power output falls. The objective here is to assess the advanced systems applied in reducing the gas turbine intake air temperature and examine the merits from integration of the ...
متن کاملImprovement of simple and regenerative gas turbine using simple and ejector-absorption refrigeration
The exhaust gases of gas turbine power plant carry a significant amount of thermal energy that is usually expelled to the atmosphere this causes a reduction in net work and efficiency of gas turbine. On the other hand, the generated power and efficiency of gas turbine plants depend largely on the temperature of the inlet air, So that they both increase as the inlet air temperature decreases. Th...
متن کاملOptimal Torque Control of PMSG-based Stand-Alone Wind Turbine with Energy Storage System
In this paper optimal torque control (OTC) of stand-alone variable-speed small-scale wind turbine equipped with a permanent magnet synchronous generator and a switch- mode rectifier is presented. It is shown that with OTC method in standalone configuration, power coefficient could be reached to its maximum possible value, i.e. 0.48. An appropriate control algorithm based on turbine characterist...
متن کاملExperimental and 3D Finite Element Analysis of a Slotless Air-Cored Axial Flux PMSG for Wind Turbine Application
In this research paper, the performance of an air-cored axial flux permanent magnet synchronous generator is evaluated for low speed, direct drive applications using 3D finite element modeling and experimental tests. The structure of the considered machine consists of double rotor and coreless stator, which results in the absence of core losses, reduction of stator weight and elimination of cog...
متن کامل